Abstract

A new cumulant-based $GW$ approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. Qualitative aspects of this method are explored within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. However, its quasiparticle properties and correlation energies are more accurate than both previous cumulant methods and standard $G_0W_0$. Our results point to new features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvement of cumulant-based $GW$ approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.