Abstract

Spectroscopic properties of odd-mass nuclei are studied within the framework of the interacting boson-fermion model (IBFM) with parameters based on the Hartree-Fock-Bogoliubov (HFB) approximation. The parametrization D1M of the Gogny energy density functional (EDF) has been used at the mean-field level to obtain the deformation energy surfaces for the considered nuclei in terms of the quadrupole deformations ($\beta,\gamma$). In addition to the energy surfaces, both single particle energies and occupation probabilities have been used as a microscopic input for building the IBFM Hamiltonian. Only three strength parameters for the particle-boson-core coupling are fitted to experimental spectra. The IBFM Hamiltonian is then used to compute the energy spectra and electromagnetic transition rates for selected odd-mass Eu and Sm nuclei as well as for $^{195}$Pt and $^{195}$Au. A reasonable agreement with the available experimental data is obtained for the considered odd-mass nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call