Abstract

Energetic-particle-induced geodesic acoustic modes, EGAMs (Fu, Phys. Rev. Let., vol. 101, 2008, pp. 185002), driven by neutral beam injection (NBI), have been observed in many DIII-D tokamak experiments (Nazikian et al., Phys. Rev. Lett., vol. 101, 2008, pp. 185001). This mechanism has been theoretically investigated in (Qiu et al., Plasma Phys. Control. Fusion, vol. 52, 2010, pp. 095003), using a sharp energetic particle distribution function, and in (Qu et al., Plasma Phys. Control. Fusion, vol. 59, 2017, pp. 055018), where the dispersion relation and eigenmode behaviour were obtained for the situation of early beam scenario, that is, for times smaller than the beam slowing down time. In this work, we extend these studies determining the eigenmode for beyond the slowing down time, in a scenario with reverse safety factor $q$ profile, where a small concentration of energetic ions can produce an off-axis maximum in the GAM dispersion relation. The characteristics of EGAM are analytically studied with the drift kinetic equation together with the MHD code NOVA. The toroidal energetic ion transit frequency, coupled with the GAM frequency, produces the maximum in the dispersion relation where the eigenmode can be found. The quantitative correspondence of experimental results with the predictions of the proposed model is analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.