Abstract

The equilibrium nature of viscosity and fluidity is discovered on the basis of the Boltzmann distribution within the framework of the concept of randomized particles as a result of the virtual presence of crystal-mobile, liquid-mobile and vapor-mobile particles. It allows one to consider the viscosity and fluidity of solutions, in particular, melts of metal alloys, from the point of view of the equilibrium partial contributions of each component in the total viscosity and fluidity, despite the kinetic interpretation of natural expressions for these properties of the liquid. A linearly additive partial expression of viscosity is possible only for perfect solutions, in this case, for alloys with unrestricted mutual solubility of the components. Alloys with eutectics, chemical compounds and other features of the state diagram are characterized by viscosity dependencies that repeat the shape of liquidus curve over entire range of the alloy composition at different temperatures, with an increase in smoothness and convergence of these curves at increasing temperature. It was established that these features of viscosity temperature dependence are completely revealed within the framework of the concept of randomized particles and the virtual cluster model of viscosity in calculating the fraction of clusters determining the viscosity of the alloy. That viscosity of the alloy is found by the formula in which thermal energy RTcr at liquidus temperature is the thermal barrier of chaotization, characterizing the crystallization temperature of the melt Tcr, as well as the melting point of pure substances. On this basis, a method is proposed for calculating the alloys viscosity by phase diagrams using the temperature dependences of pure components viscosity to change the alloy’s viscosity in proportion to ratio of the clusters fractions at any temperature above liquidus line and for the pure component, taking into account the mole fraction of each component. As a result, a three-factor model of the liquid alloy viscosity has been obtained in which the thermal barrier of chaotization RTcr is used as variable for the first time. It determines the fraction of clusters for both pure substances (at RTcr = RTm ) and for alloys. This thermal barrier reflects the essence of the virtual cluster theory of liquid and adequacy of the concept of randomized particles.

Highlights

  • Chemical compounds and other features of the state diagram are characterized by viscosity dependencies that repeat the shape of liquidus curve over entire range of the alloy composition at different temperatures, with an increase in smoothness and convergence of these curves at increasing temperature

  • It was established that these features of viscosity temperature dependence are completely revealed within the framework of the concept of randomized particles and the virtual cluster model of viscosity in calculating the fraction of clusters determining the viscosi­ ty of the alloy

  • That viscosity of the alloy is found by the formula in which thermal energy RTcr at liquidus temperature is the thermal barrier of chaotization, characterizing the crystallization temperature of the melt Tcr, as well as the melting point of pure substances

Read more

Summary

Introduction

О ВОЗМОЖНОСТИ ОПИСАНИЯ ДИНАМИЧЕСКОЙ ВЯЗКОСТИ В ЗАВИСИМОСТИ ОТ СОСТАВА СПЛАВА И ТЕМПЕРАТУРЫ ПО ДИАГРАММАМ СОСТОЯНИЯ Установлено, что эти особенности температурной зависимости вязкости полностью выявляются в рамках концепции хаотизированных частиц и виртуально-кластерной модели вязкости при расчете доли кластеров, определяющих вязкость сплава.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.