Abstract
We obtained the exact solution of the Euler–Lagrange equations following from the Chern–Simons action for $$\mathbb{S}\mathbb{O}(3)$$ connection with δ-type source. This solution is proved to describe straight linear disclination in the framework of geometric theory of defects. Torsion tensor components are calculated assuming the metric to be Euclidean. It shows that disclination can be followed by continuous distribution of dislocations with cylindrical symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.