Abstract

In contrast to conventionally-produced structural steel and stainless steel elements, wire and arc additively manufactured (WAAM) elements can exhibit a strongly anisotropic material response. To investigate this behaviour, data obtained from tensile tests on machined and as-built coupons extracted from WAAM stainless steel sheets are analysed. The observed mechanical response in the elastic range is described accurately using an orthotropic plane stress material model requiring the definition of two Young’s moduli, the Poisson’s ratio and the shear modulus. In the inelastic range, the anisotropy is captured through the Hill yield criterion, utilising the 0.2% proof stresses in the three different loading directions relative to the deposition direction; plastic Poisson’s ratios are also reported. The presented findings and constitutive description highlight significant variation in the properties of the studied stainless steel with direction, which opens up opportunities to enhance the mechanical performance of WAAM structures by optimising both the location and orientation of the printed material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.