Abstract
The method of moments (MOM) may be used to determine the evolution of the lower-order moments of an unknown aerosol distribution. Previous applications of the method have been limited by the requirement that the equations governing the evolution of the lower-order moments be in closed form. Here a new approach, the quadrature method of moments (QMOM), is described. The dynamical equations for moment evolution are replaced by a quadrature-based approximate set that satisfies closure under a much broader range of conditions without requiring that the size distribution or growth law maintain any special mathematical form. The conventional MOM is recovered as a special case of the QMOM under those conditions, e.g., free-molecular growth, for which conventional closure is satisfied. The QMOM is illustrated for the growth of sulfuric acid-water aerosols and simulations of diffusion-controlled cloud droplet growth are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.