Abstract

The method of moments (MOM) may be used to determine the evolution of the lower-order moments of an unknown aerosol distribution. Previous applications of the method have been limited by the requirement that the equations governing the evolution of the lower-order moments be in closed form. Here a new approach, the quadrature method of moments (QMOM), is described. The dynamical equations for moment evolution are replaced by a quadrature-based approximate set that satisfies closure under a much broader range of conditions without requiring that the size distribution or growth law maintain any special mathematical form. The conventional MOM is recovered as a special case of the QMOM under those conditions, e.g., free-molecular growth, for which conventional closure is satisfied. The QMOM is illustrated for the growth of sulfuric acid-water aerosols and simulations of diffusion-controlled cloud droplet growth are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call