Abstract
BackgroundCatecholaminergic polymorphic ventricular tachycardia is an inherited disease presenting with arrhythmic events during physical exercise or emotional stress. If untreated, catecholaminergic polymorphic ventricular tachycardia is a highly lethal condition: About 80% of affected individuals experience recurrent syncope, and 30% experience cardiac arrest. Catecholaminergic polymorphic ventricular tachycardia is caused by mutations in genes encoding ryanodine receptor type 2 (RyR2) and cardiac calsequestrin (CASQ2). In cases of sympathoadrenergic activation, both mutations result in a spontaneous Ca2+ release in cardiac cells, facilitating ventricular arrhythmias.Case presentationWe present a case of a 17-year-old Caucasian boy who survived sudden cardiac death caused by ventricular fibrillation while performing running exercise in a fitness center. The diagnostic workup included blood tests, coronary angiography, electrophysiological testing, and cardiac magnetic resonance imaging, but all results were normal. Because the patient’s medical history included recurrent syncope during physical and emotional stress, we strongly suspected catecholaminergic polymorphic ventricular tachycardia as the underlying disease. Genetic screening was performed and confirmed the diagnosis, revealing a new heterozygous point mutation in the gene for RyR2, c.12520T>A (p.F4174 l, exon 90, RyR2 gene). The patient was discharged from our hospital after undergoing implantation of an implantable cardioverter defibrillator for secondary prevention. Shortly after implantation, the implantable cardioverter defibrillator terminated a sustaining ventricular tachycardia episode by antitachycardic pacing. This episode occurred early in the morning while the patient was asleep.ConclusionsWe present a case of catecholaminergic polymorphic ventricular tachycardia associated with a novel single point mutation in the RyR2 gene, which, to the best of our knowledge, has not been described in the literature so far. Our patient experienced arrhythmic events under both resting conditions and physical activity, an uncommon finding in patients with catecholaminergic polymorphic ventricular tachycardia. This novel mutation may cause arrhythmias independent of sympathoadrenergic stimulation, but further evidence is needed to prove causality.
Highlights
Catecholaminergic polymorphic ventricular tachycardia is an inherited disease presenting with arrhythmic events during physical exercise or emotional stress
We present a case of catecholaminergic polymorphic ventricular tachycardia associated with a novel single point mutation in the ryanodine receptor type 2 (RyR2) gene, which, to the best of our knowledge, has not been described in the literature so far
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease presenting with recurrent syncopes during exercise and acute emotions
Summary
We present a case of a patient with CPVT in both resting conditions and physical activity. The patient’s CPVT was associated with an as yet undescribed single point mutation in the RyR2 gene. This novel mutation may cause arrhythmias independent of sympathoadrenergic stimulation, but further research and evidence are needed to prove causality. LKS, NP, and BS had the lead in writing the manuscript. All authors read and approved the final manuscript. All authors have agreed to the content of this manuscript and agree with its submission to the journal. Author details 1Internal Medicine 1, Department of Cardiology, University Hospital of Wurzburg, Oberduerrbacherstrasse 6, 97080 Wurzburg, Germany.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.