Abstract

Many subclades within the large North American freshwater fish genus Etheostoma (Percidae) show brilliant male nuptial coloration during the spring spawning season. Traditionally, perceived differences in color were often used to diagnose closely related species. More recently, perceived differences in male nuptial color have prompted further investigation of potential biodiversity using genetic tools. However, cryptic diversity among Etheostoma darters renders male nuptial color as unreliable for detecting and describing diversity, which is foundational for research and conservation efforts of this group of stream fishes. Etheostoma raneyi (Yazoo Darter) is an imperiled, range-limited fish endemic to north-central Mississippi. Existing genetic evidence indicates cryptic diversity between disjunctly distributed E. raneyi from the Little Tallahatchie and Yocona river watersheds despite no obvious differences in male color between the two drainages. Analysis of morphological truss and geometric measurements and meristic and male color characters yielded quantitative differences in E. raneyi from the two drainages consistent with genetic evidence. Morphological divergence is best explained by differences in stream gradients between the two drainages. Etheostoma faulkneri, the Yoknapatawpha Darter, is described as a species under the unified species concept. The discovery of cryptic diversity within E. raneyi would likely not have occurred without genetic tools. Cryptic diversity among Etheostoma darters and other stream fishes is common, but an overreliance on traditional methods of species delimitation (e.g., identification of a readily observable physical character to diagnose a species) impedes a full accounting of the diversity in freshwater fishes in the southeastern United States.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call