Abstract

Here we describe an IncQ1-like plasmid carrying blaKPC-2 in a new non-Tn4401 element found in Citrobacter werkmanii recovered from coastal water. In vitro and in silico approaches were used to assess antimicrobial resistance determinants, as well as blaKPC-2 vicinities. The LB-887 isolate showed a multidrug-resistant phenotype and was identified as C. werkmanii. Resistome analysis identified further acquired resistance determinants to β-lactams, aminoglycosides, sulphonamides/trimethoprim, tetracyclines, chloramphenicol, macrolides, rifampicin and fluoroquinolones. Plasmidome included incompatibility groups IncA, IncC2, IncR, Col and IncQ families. The blaKPC-2 was inserted on a new variant of NTEKPC-II, called here NTEKPC-IIe, carried by an InQ1-like plasmid of 7930 kb (pKPC-LB887). NTEKPC-IIe differed from NTEKPC-IId by the complete absence of ISKpn6-tnpA. The InQ1-like backbone harbouring this element had been described in Enterobacterales recovered from clinical and environmental settings. Unravelling genetic structures related to blaKPC dissemination in different settings may provide clues on the main forces driving evolution of this important resistance determinant. Indeed, the occurrence of blaKPC in a new NTEKPC variant from an environmental source highlights the ongoing evolution of this mobile genetic element. In addition, blaKPC carriage on a small and highly mobilizable IncQ plasmid in C. freundii complex from recreational water, similar to others found in clinical isolates, may suggest its relevance for blaKPC-2 dissemination among different compartments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call