Abstract

The arginine deiminase system (ADS) is a secondary metabolic system found in many different bacterial pathogens and it is often associated with virulence. Here, a systematic study of ADS functions in Streptococcus equi subsp. zooepidemicus (SEZ) was performed. Transcriptional levels of ADS operon genes were observed to be significantly increased when SEZ was grown under acidic conditions. We constructed arcA and arcD deletion mutants (SEZ ΔarcA and SEZ ΔarcD, respectively) and found that SEZ ΔarcA was unable to metabolize arginine and synthesize ammonia; however, arcD deletion resulted in an initial decrease in arginine consumption and ammonia production, followed by recovery to the levels of wild-type SEZ after 24 h of cultivation. Cell extracts of SEZ ΔarcA showed no arginine deiminase (AD) activity, whereas no difference in AD activity between SEZ ΔarcD and wild-type SEZ was observed. SEZ survival tests demonstrated a significant decrease in survival for SEZ ΔarcA, when compared with wild-type SEZ, under acidic conditions and in epithelial cells. These findings indicate that ADS in SEZ contributes to environmental adaptability via ammonia synthesis to reduce pH stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.