Abstract
Quasi-monochromatic light will form laser speckle upon reflection from a rough object. This laser speckle provides information about the shape of the illuminated object. Further information can be obtained if two colors of coherent light are used, provided that the colors are sufficiently close in wavelength that the interference is also measurable. It is shown that no more than two intensities of two speckle patterns and their interference are required to produce an unambiguous band-limited image of an object, to within an overall spatial translation of the image, in the absence of measurement errors and in the case where all roots of both fields and their complex conjugates are distinct. This result is proven with a root-matching technique, which treats the electric fields as polynomials in the pupil plane, the coefficients of which form the desired complex object. Several root-matching algorithms are developed and tested. These algorithms are generally slow and sensitive to noise. So motivated, several other techniques are applied to the problem, including phase retrieval, expectation maximization, and probability maximization in a sequel paper [J. Opt. Soc. Am. A 19, 458 (2002)]. The phase-retrieval and expectation-maximization techniques proved to be most effective for reconstructions of complex objects larger than 10 pixels across.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.