Abstract

Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.

Highlights

  • Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium

  • This study provides a comprehensive description of all N. meningitidis serogroups and presents proposed revisions to the nomenclature

  • We propose a comprehensive description of all N. meningitidis serogroups and a nomenclature for the cps locus, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference (Table 3, Appendix)

Read more

Summary

Introduction

Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. Molecular mechanisms of capsular polysaccharide synthesis have been elucidated; genes involved in polysaccharide biosynthesis and cell surface translocation are clustered at a single chromosomal locus termed cps. Genes within this locus are divided into 6 regions: A–D, D′, and E [16]. This study provides a comprehensive description of all N. meningitidis serogroups and presents proposed revisions to the nomenclature

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call