Abstract

The three-dimensional non-hydrostatic mesoscale model MésoNH of the French community offers the numerical environment to develop a cloud electrification scheme in a consistent way with the original mixed phase microphysical scheme. The charge separation mechanisms are entirely due to non-inductive processes and result from elastic ice–snow, ice–graupel and snow–graupel collisions. The electric charges carried by each of the five hydrometeor categories are transported along the airflow and are exchanged according to the various microphysical mass transfer rates but assuming a power law distribution of the individual charges as a function of the particle size. The electric field is diagnosed at each time step after integrating the electric potential induced by a net charge density in the Poisson equation. Finally, a lightning ash is triggered when the electric field locally steps over a given threshold. It propagates in two opposite directions until the magnitude of the electric field falls below a prescribed value. A fractal branching algorithm is then activated to extend lightning streamers away from the main channel and toward cloudy regions where substantial charge densities are present. Charges are neutralized along the tortuous lightning path with a simple procedure that preserves total charge conservation. The complete electrification scheme tested for an ideal case of vigorous supercellular storm shows an intense electrical activity all along its lifecycle. We show that the model is able to produce a direct tripolar structure of the charges as the result of a temperature charge reversal of − 10 °C and of the different sedimentation rates of the hydrometeors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.