Abstract

An extracellular recording system incorporating an electrode array and an amplifier/stimulator CMOS chip is described and characterized. Important features of this custom VLSI chip include 16 instrumentation amplifiers with a gain of 50 and the incorporation of a cross-point array allowing designation of an extracellular microelectrode as either a stimulator or sensor. The planar array consisted of 32 microelectrodes, 14 μm in diameter, and four larger reference electrodes. Microelectrodes, interconnecting traces, and bond pads were patterned with a 500-nm layer of gold. The interconnecting traces were passivated with a 1-μm thick layer of silicon nitride to provide chemical and electrical insulation and microelectrode impedance was lowered utilizing electrode position of platinum black. The amplifier exhibited a nearly flat frequency response with high pass and low pass corner frequencies of 0.7 Hz and 50 kHz, respectively. The input referred noise over the 50 kHz bandwidth was 12–16 μV RMS, well below the magnitude of previously reported extracellular potentials. Crosstalk between neighboring channels resulted in an output signal below the amplifier noise level, even for relatively large extracellular potentials. Using this system, extracellular recordings were demonstrated yielding typical peak-to-peak biopotentials of magnitude 0.9–2.1 mV and 100–400 μV for chick cardiac myocytes and rat spinal cord neurons, respectively. The key components of this extracellular recording system can be manufactured using industry standard thin film photolithographic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call