Abstract

Biological olfactory systems show high sensitivity and exquisite discriminatory capacity to odorants. These characteristics are due to hierarchical signal processing of the large numbers of sensory inputs that occurs within the olfactory system. In testing realistic computational models of the olfactory system, large numbers of chemical sensor inputs are required. So far, sensory devices that may serve as model inputs to an artificial olfactory system do not exist. The development of a large scale array of chemical sensors able to mimic the olfactory receptor neurons is described, and these have been characterised in terms of their variability and degree of redundancy. Using this device it is possible to start testing computational hypotheses appropriate to biological chemosensory systems and adapt them to the artificial olfaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call