Abstract

The measurement of modulation transfer function for radiographic screen-film systems depends critically upon a proper linearization of the measured line spread function. This is normally done by photographic photometry (i.e., using the measured density versus log exposure relationship to transform the density line spread function into an exposure line spread function). It has been long appreciated that this procedure may fail for asymmetrical dual screen systems that use film with emulsion coated on both sides of the support. The advent of asymmetrical and near-zero crossover films that can be used with highly asymmetric screen pairs has prompted a reinvestigation of these concerns about the definition and measurement of modulation transfer function. For such cases, it is useful to define the contrast transfer function, which is a function of exposure and spatial frequency. When normalized by its zero frequency value the contrast transfer function can serve as the "effective MTF" for low-contrast input signals in such systems. In the limit of symmetrical systems this quantity approaches the conventionally measured MTF. The utility of this approach is demonstrated by applying it to a commercially available asymmetrical screen-film combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.