Abstract

Charge correlations in dense ionic fluids give rise to novel effects such as long-range screening and colloidal stabilization which are not predicted by the classic Debye-Hückel theory. We show that a Coulomb or charge-frustrated Ising model, which accounts for both long-range Coulomb and short-range molecular interactions, simply describes some of these ionic correlations. In particular, we obtain, at a mean field level and in simulations, a non-monotonic dependence of the screening length on the temperature. Using a combination of simulations and mean field theories, we study how the correlations in the various regimes are affected by the strength of the short ranged interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call