Abstract
In recent years, there has been a growing interest in low-Reynolds-number, unsteady flight applications, leading to renewed scrutiny of the Kutta condition. As an alternative, various methods have been proposed, including the combination of potential flow with the triple-deck boundary layer theory to introduce a viscous correction for Theodorsen's unsteady lift. In this research article, we present a dynamical system approach for the total circulatory unsteady lift generation of a pitching airfoil. The system's input is the pitching angle, and the output is the total circulatory lift. By employing the triple-deck boundary layer theory instead of the Kutta condition, a new nonlinearity in the system emerges, necessitating further investigation to understand its impact on the unsteady lift model. To achieve this, we utilize the describing function method to represent the frequency response of the total circulatory lift. Our analysis focuses on a pitching flat plate about the mid-chord point. The results demonstrate that there is an additional phase lag due to viscous effects, which increase as the reduced frequency increases, the Reynolds number decreases, and/or the pitching amplitude increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.