Abstract

Symmetrizing the Dai–Liao (DL) search direction matrix by a rank-one modification, we propose a one-parameter class of nonlinear conjugate gradient (CG) methods which includes the memoryless Broyden–Fletcher–Goldfarb–Shanno (MLBFGS) quasi-Newton updating formula. Then, conducting an eigenvalue analysis, we suggest two choices for the parameter of the proposed class of CG methods which simultaneously guarantee the descent property and well-conditioning of the search direction matrix. A global convergence analysis is made for uniformly convex objective functions. Computational experiments are done on a set of unconstrained optimization test problems of the CUTEr collection. Results of numerical comparisons made by the Dolan–Moré performance profile show that proper choices for the mentioned parameter may lead to promising computational performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.