Abstract
Despite computational superiorities, some traditional conjugate gradient algorithms such as Polak–Ribiére–Polyak and Hestenes–Stiefel methods generally fail to guarantee the descent condition. Here, in a matrix viewpoint, spectral versions of such methods are developed which fulfill the descent condition. The convergence of the given spectral algorithms is argued briefly. Afterwards, we propose an improved version of the nonnegative matrix factorization problem by adding penalty terms to the model, for controlling the condition number of one of the factorization elements. Finally, the computational merits of the method are examined using a set of CUTEr test problems as well as some random nonnegative matrix factorization models. The results typically agree with our analytical spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Academy of Romanian Scientists Series on Science and Technology of Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.