Abstract
Motivated by juggling sequences and bubble sort, we examine permutations on the set${1, 2, \ldots, n}$ with $d$ descents and maximum drop size $k$. We give explicit formulas for enumerating such permutations for given integers $k$ and $d$. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Motivés par les "suites de jonglerie'' et le tri à bulles, nous étudions les permutations de l'ensemble ${1, 2, \ldots, n}$ ayant $d$ descentes et une taille de déficience maximale $k$. Nous donnons des formules explicites pour l'énumération de telles permutations pour des entiers k et d fixés, ainsi que les fonctions génératrices connexes. Nous montrons aussi que les coefficients possèdent des propriétés d'unimodalité et de symétrie.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.