Abstract

In general, when a quasi-Newton method is applied to solve a system of nonlinear equations, the quasi-Newton direction is not necessarily a descent direction for the norm function. In this paper, we show that when applied to solve symmetric nonlinear equations, a quasi-Newton method with positive definite iterative matrices may generate descent directions for the norm function. On the basis of a Gauss--Newton based BFGS method [D. H. Li and M. Fukushima, SIAM J. Numer. Anal., 37 (1999), pp. 152--172], we develop a norm descent BFGS method for solving symmetric nonlinear equations. Under mild conditions, we establish the global and superlinear convergence of the method. The proposed method shares some favorable properties of the BFGS method for solving unconstrained optimization problems: (a) the generated sequence of the quasi-Newton matrices is positive definite; (b) the generated sequence of iterates is norm descent; (c) a global convergence theorem is established without nonsingularity assumption on the Jacobian. Preliminary numerical results are reported, which positively support the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.