Abstract

A stochastic approximation (SA) algorithm with new adaptive step sizes for solving unconstrained minimization problems in noisy environment is proposed. New adaptive step size scheme uses ordered statistics of fixed number of previous noisy function values as a criterion for accepting good and rejecting bad steps. The scheme allows the algorithm to move in bigger steps and avoid steps proportional to 1/k when it is expected that larger steps will improve the performance. An algorithm with the new adaptive scheme is defined for a general descent direction. The almost sure convergence is established. The performance of new algorithm is tested on a set of standard test problems and compared with relevant algorithms. Numerical results support theoretical expectations and verify efficiency of the algorithm regardless of chosen search direction and noise level. Numerical results on problems arising in machine learning are also presented. Linear regression problem is considered using real data set. The results suggest that the proposed algorithm shows promise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.