Abstract

Isolated brainstem-spinal cord preparations were used to explore the coexistence of a direct and an indirect descending drive from the brainstem respiratory centre to cervical and thoracic respiratory motoneurons in the neonatal Sprague-Dawley rat. Polysynaptic spinal relay pathways from the respiratory centre were suppressed by selectively perfusing the cord with mephenesin (1 mM) or a solution enriched with Ca2+ and Mg2+. At birth, both direct and spinally relayed pathways are functional and contribute equally to the global descending respiratory drive. However, during the first postnatal week, significant maturational changes appear in the way the respiratory centre controls its target respiratory motoneurons in the cervical and thoracic spinal cord, with the direct respiratory drive becoming progressively predominant with maturation (from 50% to around 75% of the global descending command). The relative contributions of the monosynaptic and the polysynaptic spinal pathways may therefore have important implications for effective respiratory control during early postnatal development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call