Abstract
Abstract Tornadic vortex signatures (TVSs) of 52 tornadoes were identified and analyzed, then characterized as either descending or nondescending. This characterization refers to a known tendency of radar-observed tornadic vortices, namely, that of their initial detection aloft and then of their subsequent descent leading to tornadogenesis. Only 52% of the sampled TVSs descended according to this archetypal model. The remaining 48% were detected first near the ground and grew upward or appeared nearly simultaneously over a several kilometer depth; these represent primary modes of tornado development that have been explained theoretically. The descending–nondescending TVSs were stratified according to attributes of the tornado and TVS. Significantly, tornadoes within quasi-linear convective systems tended to be associated with nondescending TVSs, identification of which provided a mean tornado lead time of 5 min. Two case studies are presented for illustrative purposes. On 1 July 1997 in southern Minnesota...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.