Abstract

On a stack of stable maps, the cotangent line classes are modified by subtracting certain boundary divisors. These modified cotangent line classes are compatible with forgetful morphisms, and are well-suited to enumerative geometry: tangency conditions allow simple expressions in terms of modified cotangent line classes. Topological recursion relations are established among their top products in genus 0, yielding effective recursions for characteristic numbers of rational curves in any projective homogeneous variety. In higher genus, the obtained numbers are only virtual, due to contributions from spurious components of the space of maps. For the projective plane, the necessary corrections are determined in genus 1 and 2 to give the characteristic numbers in these cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.