Abstract
A Steiner chain of length k consists of k circles tangent to two given non-intersecting circles (the parent circles) and tangent to each other in a cyclic pattern. The Steiner porism states that once a chain of k circles exists, there exists a 1-parameter family of such chains with the same parent circles that can be constructed starting with any initial circle tangent to the parent circles. What do the circles in these 1-parameter family of Steiner chains of length k have in common? We prove that the first k – 1 moments of their curvatures remain constant within a 1-parameter family. For k = 3, this follows from the Descartes circle theorem. We extend our result to Steiner chains in spherical and hyperbolic geometries and present a related more general theorem involving spherical designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.