Abstract

The purpose of this work is the analysis of the consequences that desaturation maneuvers can have in the precise orbit determination corresponding to the Radio Science Experiment (MORE) of the BepiColombo mission to Mercury. This mission is an ESA/JAXA joint project with very challenging objectives regarding geodesy, geophysics and fundamental physics. In the neighborhood of Mercury, the s/c will experience strong solar radiation pressure torques; the s/c attitude is controlled by inertial wheels that after some time reach their maximum rotation state. Then they have to be slowed down by means of thruster pulses, inducing a residual acceleration on the s/c, with a desaturation (or off-loading) maneuver. In this paper, we will show how such maneuvers affect the orbit of the s/c and the radio science measurements and, also, how to include them in the orbit determination and parameter estimation procedure. The non linear least squares fit we consider is applied on a set of observational arcs separated by intervals of time where the probe is not visible. With the current baseline of two ground stations, two maneuvers are performed per day, one during the observing session, the other in the dark. To reach the scientific goals of the mission, they have to be treated as "solve for quantities". We have developed a specific methodology based on the deterministic propagation of the orbit, which is able to deal with these variables, by connecting subsequent observational arcs in a smooth way. The numerical simulations we will show demonstrate that this constrained multi-arc strategy is able to determine the maneuvers, including the ones in the dark, together with the other parameters of interest at a high level of accuracy. The future development consists in including accelerometer readings and calibrations in the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call