Abstract

Two pilot-scale desalination systems employing carbon modified nano-sized, zero valent metals (n-ZVMs) were manufactured and tested to determine (1) the degree to which high-salt water (20 to 130 mS) could be desalinated and (2) if this degree of desalination could be maintained throughout an extended treatment period. The two pilot systems (referred to as Generation 1 and Generation 2) consisted of parallel lines of four individual reactors in series, a settling tank and an activated carbon cell at the end of each reactor line. The system capacity was 300 gal in Generation 1 and 600 gal in Generation 2 with a total hydraulic residence time of 6 h per reactor line (one hour per cell/tank). A slurry of n-ZVMs manufactured from mixtures of ferrous sulfate and green or black tea extract was introduced in the first reactor on each line to yield approximately 5 to 45 g of nano metal per 100 L of influent salt water based on dosing experiments required to achieve maximum salt removal at each of the three influent salt contents used, 28 mS, 44 mS and 123 mS. Once dosing was set, continuous runs (14 days, 23 days and 9 days) were carried out. The results demonstrated that maximum removal occurred with 10 g/100 L of salt for the 30 mS salt solution, 16 g/100 L of salt for the 40 mS influent water and 40 g/100 L for the 130 mS influent. Salt removal (expressed as Na+ and Cl− removed) approached 78% for the 30 mS influent and 41 mS influent, respectively, while removal for the highest concentration salt influent (130 mS) approached 81%. Continuous operation over the extended time-period showed no significant decrease in salt removal with a typical day to day variation of no more than 10%, suggesting that this approach to desalination could rapidly provide usable water from saline aquifers, seawater or even produced water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call