Abstract

The freeze-melting process can be a viable method for the purposes of desalination because of its low energy consumption, ignorable corrosion issues, and without huge pressure or membrane replacement work. Large contact area for heat and mass transfer per unit mass of water between the water and air and low heat resistance results in higher energy efficiency during spray freezing desalination process compared to other freezing desalination methods. A 200 m high desalination tower was proposed in this paper that could generate 27.7 kg/s fresh water in the form of water droplets with 2 mm diameter at an atmospheric temperature of −26°C. This research has founded that the natural convective airflow induced by the heat released by the warm water in the freezing process could generate through the wind turbine mounted in this system approximately one-third of the energy consumed by the water pump of the system. This free energy has never been studied in previous research. The power consumption required to produce 1 m3 fresh water in this system is approximately 1.07 kWh. Compared to traditional desalination methods, the power consumption of our new spray freezing desalination system is much lower than previous systems with the same mass flow rate of fresh water. Only 375.4 kJ cold energy to produce one-kilogram fresh water. Thus, this spray freezing desalination system could be employed in desalination industry if free cold energy (e.g. from the cold atmosphere or the regasification process of LNG) and seawater resources are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.