Abstract

Climate change influences spreading and occurrence of forest fire. Forest fire modeling is one of the most important tasks to fight forest fires. Climate data of current (1980–2010) was projected to near (2010–2039), mid (2040–2069) and end-term (2070–2099) using Representative Concentration Pathway (RCP4.5 and 8.5) of an ensemble of twenty General Circulation Models using R-software. Current and projected climate data were used to determine the impact of climate change on current and future forest fire using Keetch-Byram Drought Index. Current and future forest fire-vulnerable areas were mapped and weighed using Inverse Distance Weighting. The result indicates that, while no forest fire occurrence in the current, there might be a high forest fire risk in near-term. It might be become very high in mid and end-term. The size of forest fire-vulnerable areas might be increased to 12.85, 18.8, 17.1 and 46.26% in Mid-RCP4.5, Mid-RCP8.5, End-RCP4.5 and End-term-RCP8.5 respectively. Fire may occurred in winter and spring seasons. The risk might be move to higher elevation of the forest. This directs increase of forest fire occurrence and spread due to climate change. The study recommends that forest fire management should be applied before fire happened to sustain the forest and its products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.