Abstract

Accurate skin lesion segmentation is important for identification and classification through computational methods. However, when performed by dermatologists, the results of clinical segmentation are affected by a certain margin of inaccuracy (which exists since dermatologist do not delineate lesions for segmentation but for extraction) and also significant inter- and intra-individual variability, such segmentation is not sufficiently accurate for segmentation studies. This work addresses these limitations to enable detailed analysis of lesions’ geometry along with extraction of non-linear characteristics of region-of-interest border lines. A comprehensive review of 39 segmentation methods is carried out and a contribution to improve dermoscopic image segmentation is presented to determine the regions-of-interest of skin lesions, through accurate border lines with fine geometric details. This approach resorts to Local Binary Patterns and k-means clustering for precise identification of lesions boundaries, particularly the melanocytic. A comparative evaluation study is carried out using three different datasets and reviewed algorithms are grouped according to their approach. Results show that algorithms from the same group tend to perform similarly. Nevertheless, their performance does not depend uniquely on the algorithm itself but also on the underlying dataset characteristics. Throughout several evaluations, the proposed Local Binary Patterns method presents, consistently, better average performance than the current state-of-the-art techniques across the three different datasets without the need of training or supervised learning steps. Overall, apart from presenting a new segmentation method capable of outperforming the current state-of-the-art, this paper provides insightful information about the behaviour and performance of different image segmentation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.