Abstract

Background and objectiveDermatological images are typically diagnosed based on visual analysis of the skin lesion acquired using a dermoscope. However, the final quality of the acquired image is highly dependent on the illumination conditions during the acquisition phase. This variability in the light source can affect the dermatologist's diagnosis and decrease the accuracy of computer-aided diagnosis systems. Color constancy algorithms have proven to be a powerful tool to address this issue by allowing the standardization of the image illumination source, but the most commonly used algorithms still present some inherent limitations due to assumptions made on the original image. In this work, we propose a novel Dermatological Color Constancy Generative Adversarial Network (DermoCC-GAN) algorithm to overcome the current limitations by formulating the color constancy task as an image-to-image translation problem. MethodsA generative adversarial network was trained with a custom heuristic algorithm that performs well on the training set. The model hence learns the domain transfer task (from original to color standardized image) and is then able to accurately apply the color constancy on test images characterized by different illumination conditions. ResultsThe proposed algorithm outperforms state-of-the-art color constancy algorithms for dermatological images in terms of normalized median intensity and when using the color-normalized images in a deep learning framework for lesion classification (accuracy of the seven-class classifier: 79.2%) and segmentation (dice score: 90.9%). In addition, we validated the proposed approach on two different external datasets with highly satisfactory results. ConclusionsThe novel strategy presented here shows how it is possible to generalize a heuristic method for color constancy for dermatological image analysis by training a GAN. The overall approach presented here can be easily extended to numerous other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call