Abstract

This study introduces the family of the novel ”cot-generator” distributions based on the cotangent function. The construction of the probability density function based on the cot-generator and its corresponding moments, reliability indicators, and order statistics are derived. Regarding inferential procedures, the maximum likelihood estimation method is implemented to estimate the model parameters in a non-closed form. The novel Cot-Fréchet distribution (NCFD) is then focused on a specific class member, constructed using the Fréchet distribution as the baseline. The estimators’ bias, variance, and mean square error (MSE) efficiency are examined and evaluated through Monte Carlo simulation experiments. The novel model is also applied to some real data sets to assess its efficacy and is compared with other competing distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.