Abstract

Using brightness temperature <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Tb</i> measurements from L-band airborne microwave radiometers, with independent sea surface temperature (SST) observations, sea surface salinity (SSS) can be remotely determined with errors of about 1 psu in temperate regions. Nonlinearities in the relationship between <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Tb</i> , SSS, and SST produce variations in the sensitivity of salinity <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> to variations in <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Tb</i> and SST. Despite significant efforts devoted to SSS remote sensing retrieval algorithms, little consideration has been given to deriving density <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> from remotely sensed SSS and SST. Density is related to <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> through the equation of state. It affects the ocean's static stability and its dynamical response to forcings. By chaining together two empirical relationships (flat-sea emissivity and equation of state) to form an inversion algorithm for sea surface density (SSD) in terms of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Tb</i> and SST, we develop a simple L-band SSD retrieval algorithm. We use this to investigate the sensitivity of SSD retrievals to observed <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Tb</i> and SST and infer errors in <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> for typical sampling configurations of the airborne Salinity, Temperature, And Roughness Remote Scanner (STARRS) and satellite-borne Soil Moisture and Ocean Salinity (SMOS) and Aquarius radiometers. We then derive <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> from observations of river plumes obtained using STARRS and demonstrate several oceanographic applications: the observations are used to study variations in <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> effects on <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> in the Mississippi plume, and the across-shelf density gradient is used to infer surface geostrophic shear and subsurface geostrophic current in the Plata plume. Future basin-scale applications of SSD retrievals from satellite-borne microwave radiometers such as SMOS and Aquarius are anticipated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.