Abstract

In this paper we provide a systematic way to construct the robust counterpart of a nonlinear uncertain inequality that is concave in the uncertain parameters. We use convex analysis (support functions, conjugate functions, Fenchel duality) and conic duality in order to convert the robust counterpart into an explicit and computationally tractable set of constraints. It turns out that to do so one has to calculate the support function of the uncertainty set and the concave conjugate of the nonlinear constraint function. Conveniently, these two computations are completely independent. This approach has several advantages. First, it provides an easy structured way to construct the robust counterpart both for linear and nonlinear inequalities. Second, it shows that for new classes of uncertainty regions and for new classes of nonlinear optimization problems tractable counterparts can be derived. We also study some cases where the inequality is nonconcave in the uncertain parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.