Abstract
Using the electrical spark discharge method, this study prepared a nano-Ag colloid using self-developed, microelectrical discharge machining equipment. Requiring no additional surfactant, the approach in question can be used at the ambient temperature and pressure. Moreover, this novel physical method of preparation produced no chemical pollution. This study conducted an in-depth investigation to establish the following electrical discharge conditions: gap electrical discharge, short circuits, and open circuits. Short circuits affect system lifespan and cause electrode consumption, resulting in large, non-nanoscale particles. Accordingly, in this study, research for and design of a new logic judgment circuit set was used to determine the short-circuit rate. The Ziegler–Nichols proportional–integral–derivative (PID) method was then adopted to find optimal PID values for reducing the ratio between short-circuit and discharge rates of the system. The particle size, zeta potential, and ultraviolet spectrum of the nano-Ag colloid prepared using the aforementioned method were also analyzed with nanoanalysis equipment. Lastly, the characteristics of nanosized particles were analyzed with a transmission electron microscope. This study found that the lowest ratio between short-circuit rates was obtained (1.77%) when PID parameters were such that Kp was 0.96, Ki was 5.760576, and Kd was 0.039996. For the nano-Ag colloid prepared using the aforementioned PID parameters, the particle size was 3.409 nm, zeta potential was approximately −46.8 mV, absorbance was approximately 0.26, and surface plasmon resonance was 390 nm. Therefore, this study demonstrated that reducing the short-circuit rate can substantially enhance the effectiveness of the preparation and produce an optimal nano-Ag colloid.
Highlights
Nanotechnology entails the science and technology that apply the physical and chemical characteristics of substances smaller than 100 nm [1] to the design and production of new components and systems
The techniques used to prepare nanoparticles can be classified into chemical methods and physical methods
The curves demonstrate that when Ku was 1.6, the lowest short-circuit rate (1.77%) was obtained using PID parameters (i.e., Kp = 0.96; Ki = 5.760576; Kd = 0.039996), with the ratio between the short-circuit rate and the discharge success rate being 0.053
Summary
Nanotechnology entails the science and technology that apply the physical and chemical characteristics of substances smaller than 100 nm [1] to the design and production of new components and systems. The techniques used to prepare nanoparticles can be classified into chemical methods and physical methods. The physical methods include mechanical milling [4], thermal evaporation [5], the submerged arc. 30 Tμhme,ealedcitsrcichaarrcgecacnolruemacnh itsemfoprmereadtubreestwaseehnigthheastw50o00e–le6c0t0ro0dKes[1[09]],, cgaeunseinragtiantgomthseastot-hcealmleedtaslpsaurrkf.ace Thetoemlecetlrti.cTahricscmanetrheoacdhistecmalpleedratthuereEsSaDsMhi.gh as 5000–6000 K [10], causing atoms at the metal surface to melt. ApAplpypinlyginEgSDESMDMin icnomcobminbaitnioantiownitwhitEhDEMD,Mth, ethreesreeasrecahrctheatmeamof othf itshisstusdtuydsyucscuecscsefusslflyully preppraerpeadresdevseervaelrkailnkdins dosf onfanaoncolclolildo,idin,cilnucdluindginnganaon-Ao-uA, un,anaon-Toi-OTi2O, n2a, noa-nAol-,Aaln, danndanoangroagprhapenheene colcloildlosid[1s1[1–41].4B].eBcaeucasuesteratrdaidtiiotinoanlaEl EDDMMeeqquuipipmmeennttiiss outdatedd aannddddiffiiffciucultltotommainaitnaitnai,nm, imcrioc-rEoD- M EDeMqueiqpumipemntewntaws adsedvevloeploepde. T. hTehaenanlyasliyssoisf of nannoa-nAou-Aaundanndannoa-nAog-Acgolcloildlosidpsreppraerpeadrewditwhitthhitsheisqueqipumipemnte,nut,siunsginhgighhi-gphr-epcriseicoisnioinsitnrustmruemntesn, ts, shoswhoewd etdhatthaatllaollf otfhethceoclloolildoaidl apl aprtairctliecsleds idspislpaylaeydednannaonpoaprtairctlieclechcahrarcatecrtiesrtiisctsic[s15[1].5]S. tuSdtiuedsieosf of nannoamnoemtael tcaollclooildlosidpsreppraerpeadreudsiunsginmgicmroic-rEoD-EMDMhavheavtaekteankeintionatoccaocucnotuonnt loyntlhyethdeisdchisacrhgaergseucscuecscsess ratrea. tTe.hiTs hsitsudstyudoybsoebrvserdvethdethcoencdointidointisonfosrfocur rcruenrrtesnftlsowfloinwginbgetbweetweneeenleectleroctdreosd,eisn,cilnucdliundginggapgap eleecltericctarilcdailsdchisacrhgaergaendanedleecltercotdroedsehosrhtocritrcuirictus,itasn, danedxpelxoprleodretdhetsheespehpenhoenmoemnaenina dinepdtehp.tBhe. cBaeucsaeutsheethe shosrhto-critr-cuirictupithpehneonmoemneonnonmmayayexeexretrtaannaaddvveerrsseeeeffffect on eeqquuiippmmeenntt,,ththisisstsutuddyydedseisgingendeda saetseotf olofgic logjiucdjgumdgemntecnirtccuiirtcsutiotsidtoenitdifeyntsihfyorsthcoirrctuciitrsc.uTihtse. sThhoerts-hciorrctu-citirrcauteitwratsecwalcaus lcaatelcdublaytecdombypuctoemr spouftwerare sofutwsianrge tuhseinagfotrheemaefnotrieomnednticoirnceuditcoiructupiut tousitgpnuatls.igInnalasd. dInitiaodnd, ithioisn,stuhidsystuusdeyd uthsedZtihegelZeri–eNgliecrh–ols Nichlaoslssicclparsospicoprtrioopnoarl–tionnteagl–rainl–tedgeraivl–adtievreiv(PatIiDv)em(PeItDho) dmteothdoedtetromdineteeormptiinmeaol pPtIiDmpalaPraImDeptaersamtoertedrsuce to trheeduscheortth-ceirschuoirtt-rcaitrec.uiLt arsattley., Lhaoswtlys,hhoortw-cisrhcuoirtt-rcairtceuiist realtaeteisd rteolapteadrtitcolepaanratilcylseisa,nzaelytasips,ozteentatial, potaenndtiabl,saonrdbaanbcseowrbaasnecxepwloarsedex[p1l6o–r1e9d].[16,17,18,19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.