Abstract

Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.