Abstract
We derive hydrodynamic equations from Vicsek-style dry active matter models in three dimensions (3D), building on our experience on the 2D case using the Boltzmann–Ginzburg–Landau approach. The hydrodynamic equations are obtained from a Boltzmann equation expressed in terms of an expansion in spherical harmonics. All their transport coefficients are given with explicit dependences on particle-level parameters. The linear stability analysis of their spatially-homogeneous solutions is presented. While the equations derived for the polar case (original Vicsek model with ferromagnetic alignment) and their solutions do not differ much from their 2D counterparts, the active nematics case exhibits remarkable differences: we find a true discontinuous transition to order with a bistability region, and cholesteric solutions whose stability we discuss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.