Abstract

Retracing the trajectories of past genetic events is crucial to understand the structure of the genome, both in individuals and across populations. A haplotype describes a string of polymorphic sites along a DNA segment. Haplotype diversity is due to mutations creating new variants, and to recombinations and gene conversions that mix and redistribute these variants among individual chromosomes in populations. A number of studies have revealed a relatively simple pattern of haplotype diversity in the human genome, dominated by a few common haplotypes representing founder ancestral ones. New haplotypes are usually rare and have a limited geographic distribution. We propose a method to derive a new haplotype from a set of putative ancestral haplotypes, once mutations in place, through minimal recombination and gene conversion pathways. We describe classes of pathways that represent the whole set of minimal pathways leading to a new haplotype. We show that obtaining this set of pathways can be represented as a problem of finding "secondary structures" of minimum energy. We present a polynomial algorithm solving this folding problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.