Abstract

Euler’s equation relates the change in angular momentum of a rigid body to the applied torque. This paper uses Lagrangian dynamics to derive Euler’s equation in terms of generalized coordinates. This is done by parameterizing the angular velocity vector in terms of 3-2-1 and 3-1-3 Euler angles as well as Euler parameters, that is, quaternions. This paper fills a gap in the literature by using generalized coordinates to parameterize the angular velocity vector and thereby transform the dynamics obtained from Lagrangian dynamics into Euler’s equation for rigid-body rotation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call