Abstract

A very common model for prediction of tree stem volumes to upper-stem height or diameter limits is the use of a merchantable to total volume ratio function multiplied by a total stem volume function. Many users of these prediction systems also desire taper equations that can predict heights to upper-stem diameters. While taper equations compatible with volume ratio equations have been used for many years, compatible taper equations from volume ratio equations that are functions of upper-stem height have been used infrequently. Yet many studies have indicated that height-based ratio equations perform well and frequently have statistics of fit that are comparable with diameter-based volume ratio equations. Compatible taper equations derived from height-based ratio equations are presented here. The methodology that uses height-based merchantable to total volume ratios does not require the solution of a differential equation after differentiating the height-based volume ratio, as is necessary when using the method of deriving taper equations from diameter-based merchantable to total volume ratios. This could be an advantage depending on the complexity of the ratio function. Example taper equations fitted to loblolly pine (Pinus taeda L.) data from the southeastern USA and the state of Oklahoma, USA, indicate good fit to these data, whether fitted directly to taper data or implicitly by using parameters fitted to volume ratio data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call