Abstract
We propose a Semantic Feature Pyramid Network (FPN)-based algorithm to derive agricultural field boundaries and internal non-planting regions from satellite imagery. It is aimed at providing guidance not only for land use management, but more importantly for harvest or crop protection machinery planning. The Semantic Convolutional Neural Network (CNN) FPN is first employed for pixel-wise classification on each remote sensing image, detecting agricultural parcels; a post-processing method is then developed to transfer attained pixel classification results into closed contours, as field boundaries and internal non-planting regions, including slender paths (walking or water) and obstacles (trees or electronic poles). Three study sites with different plot sizes (0.11 ha, 1.39 ha, and 2.24 ha) are selected to validate the effectiveness of our algorithm, and the performance compared with other semantic CNN (including U-Net, U-Net++, PSP-Net, and Link-Net)-based algorithms. The test results show that the crop acreage information, field boundaries, and internal non-planting area could be determined by using the proposed algorithm in different places. When the boundary number applicable for machinery planning is attained, average and total crop planting area values all remain closer to the reference ones generally when using the semantic FPN with post-processing, compared with other methods. The post-processing methodology would greatly decrease the number of inapplicable and redundant field boundaries for path planning using different CNN models. In addition, the crop planting mode and scale (especially the small-scale planting and small/blurred gap between fields) both make a great difference to the boundary delineation and crop acreage determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.