Abstract
Relative entropy is a divergence measure between two probability density functions of a random variable. Assuming that the random variable has only two alphabets, the relative entropy becomes a cross-entropy error function that can accelerate training convergence of multi-layer perceptron neural networks. Also, the n-th order extension of cross-entropy (nCE) error function exhibits an improved performance in viewpoints of learning convergence and generalization capability. In this paper, we derive a new divergence measure between two probability density functions from the nCE error function. And the new divergence measure is compared with the relative entropy through the use of three-dimensional plots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.