Abstract

Industrial control systems (ICSs), and particularly supervisory control and data acquisition (SCADA) systems, are used in many critical infrastructures and are inherently insecure, making them desirable targets for attackers. ICS networks differ from typical enterprise networks in their characteristics and goals; therefore, security assessment methods that are common in enterprise networks (e.g., penetration testing) cannot be directly applied in ICSs. Thus, security experts recommend using an isolated environment that mimics the real one for assessing the security of ICSs. While the use of such environments solves the main challenge in ICS security analysis, it poses another one: the trade-off between budget and fidelity. In this paper we suggest a method for creating a digital twin that is network-specific, cost-efficient, highly reliable, and security test-oriented. The proposed method consists of two modules: a problem builder that takes facts about the system under test and converts them into a rules set that reflects the system’s topology and digital twin implementation constraints; and a solver that takes these inputs and uses 0–1 non-linear programming to find an optimal solution (i.e., a digital twin specification), which satisfies all of the constraints. We demonstrate the application of our method on a simple use case of a simplified ICS network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call