Abstract

BackgroundMacrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns.ResultsWe globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models.ConclusionThree macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.

Highlights

  • Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases

  • Ramirez et al BMC Bioinformatics (2019) 20:725 classified as Classically Activated Macrophages (M1) and Alternatively Activated Macrophages (M2) due to different stimuli in the complex in vivo cytokine environment

  • M2a activation is stimulated by interleukin-4 (IL-4) and IL-13, while M2b with immune complex (IC) + Toll-like receptor (TLR), IC + IL-1 receptor (IL1R), or IL-1β, M2c with IL-10 or Transforming Growth Factor–β (TGF-β) stimuli, and M2d with TLR ligands or adenosine receptor ligands [9,10,11,12]

Read more

Summary

Introduction

Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Over the past 30 years, extensive research has been dedicated to investigating the role of macrophages due to its versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases, the top 2 leading causes of death in the world [1,2,3,4]. M2 macrophages secrete high levels of IL-10, Transforming Growth Factor–β (TGF-β) and low levels of IL-12 and IL-23. Switches between M1 and M2 phenotypes have been reported [13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call