Abstract

The present paper provides an overview on currently developed derivatization chemistries and techniques for determination of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in microdialysis samples by microbore liquid chromatography with fluorescence detection. In mild alkaline conditions, 5-hydroxyindoles and catecholamines react with benzylamine (BA), forming highly fluorescent 2-phenyl-4,5-pyrrolobenzoxazoles and 2-phenyl(4,5-dihydropyrrolo) [2,3-f]benzoxazoles, respectively. However, for derivatization of DA a higher fluorescence intensity was achieved for reaction with 1,2-diphenylethylenediamine (DPE) rather than with BA, therefore for simultaneous determination of 5-HT, NE and DA in brain microdialysates, a two-step derivatization with BA followed by DPE was developed. The detection limits for 5-HT, NE and DA were 0.2, 0.08 and 0.13 fmol, respectively, in an injection volume of 20 microL, which corresponds to concentrations of 30, 12 and 19.5 pm, respectively in standard solution prior to derivatization. The experimental data presented demonstrate the ability of the technique to simultaneously monitor neuronally releasable pools of monoamine neurotransmitters in the rat and mouse brains at basal conditions and following pharmacological treatments or physiological stimuli. These techniques play an important role in drug discovery and clinical investigation of psychiatric and neurological diseases such as depression, schizophrenia and Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.