Abstract
We give a formula for certain values and derivatives of Siegel series and use them to compute Fourier coefficients of derivatives of the Siegel Eisenstein series of weight $$\frac{g}{2}$$ and genus g. When $$g=4$$ , the Fourier coefficient is approximated by a certain Fourier coefficient of the central derivative of the Siegel Eisenstein series of weight 2 and genus 3, which is related to the intersection of 3 arithmetic modular correspondences. Applications include a relation between weighted averages of representation numbers of symmetric matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.