Abstract

Development of emissive materials for utilization in organic light-emitting diodes (OLEDs) remains a highly relevant research field. One of the most important aspects in the development of efficient emitters for OLEDs is the efficiency of triplet-to-singlet exciton conversion. There are many concepts proposed for the transformation of triplet excitons to singlet excitons, among which thermally activated delayed fluorescence (TADF) is the most efficient and widespread. One of the variations of the TADF concept is the hot exciton approach according to which the process of exciton relaxation into the lowest energy electronic state (internal conversion as usual) is slower than intersystem crossing between high-lying singlets and triplets. In this paper, we present the donor-acceptor materials based on 2-pyridone acceptor coupled to the different donor moieties through the phenyl linker demonstrating good performance as components of sky-blue, green-yellow, and white OLEDs. Despite relatively low photoluminescence quantum yields, the compound containing 9,9-dimethyl-9,10-dihydroacridine donor demonstrated very good efficiency in sky-blue OLED with the single emissive layer, which showed an external quantum efficiency (EQE) of 3.7%. It also forms a green-yellow-emitting exciplex with 4,4',4″-tris[phenyl(m-tolyl)amino]triphenylamine. The corresponding OLED showed an EQE of 6.9%. The white OLED combining both exciplex and single emitter layers demonstrated an EQE of 9.8% together with excellent current and power efficiencies of 16.1 cd A-1 and 6.9 lm W-1, respectively. Quantum-chemical calculations together with the analysis of photoluminescence decay curves confirm the ability of all of the studied compounds to exhibit TADF through the hot exciton pathway, but the limiting factor reducing the efficiency of OLEDs is the low photoluminescence quantum yields caused mainly by nonradiative intersystem crossing dominating over the radiative fluorescence pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.